EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR AUTHORSHIP... - BV FAPESP
Busca avançada
Ano de início
Entree


EXPLAINABLE ARTIFICIAL INTELLIGENCE FOR AUTHORSHIP ATTRIBUTION ON SOCIAL MEDIA

Texto completo
Autor(es):
Theophilo, Antonio ; Padilha, Rafael ; Andalo, Fernanda A. ; Rocha, Anderson ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP); v. N/A, p. 5-pg., 2022-01-01.
Resumo

One of the major modern threats to society is the propagation of misinformation - fake news, science denialism, hate speech - fueled by social media's widespread adoption. On the leading social platforms, millions of automated and fake profiles exist only for this purpose. One step to mitigate this problem is verifying the authenticity of profiles, which proves to be an infeasible task to be done manually. Recent data-driven methods accurately tackle this problem by performing automatic authorship attribution, although an important aspect is often overlooked: model interpretability. Is it possible to make the decision process of such methods transparent and interpretable for social media content considering its specificities? In this work, we extend upon LIME - a model-agnostic interpretability technique - to improve the explanations of the state-of-the-art methods for authorship attribution on social media posts. Our extension allows us to employ the same input representation of the model as interpretable features, identifying important elements for the authorship process. We also allow coping with the lack of perturbed samples in the scenario of short messages. Finally, we show qualitative and quantitative evidence of these findings. (AU)

Processo FAPESP: 17/12646-3 - Déjà vu: coerência temporal, espacial e de caracterização de dados heterogêneos para análise e interpretação de integridade
Beneficiário:Anderson de Rezende Rocha
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/10204-6 - Combatendo Notícias Falsas Através da Atribuição de Autoria e da Análise de Filogenia
Beneficiário:Antônio Carlos Theóphilo Costa Júnior
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 17/21957-2 - Encontrando Evidências Visuais da Passagem do Tempo
Beneficiário:Rafael Soares Padilha
Modalidade de apoio: Bolsas no Brasil - Doutorado