Network Structural Optimization Based on Swarm Int... - BV FAPESP
Busca avançada
Ano de início
Entree


Network Structural Optimization Based on Swarm Intelligence for Highlevel Classification

Texto completo
Autor(es):
Carneiro, Murillo G. ; Zhao, Liang ; Cheng, Ran ; Jin, Yaochu ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN); v. N/A, p. 8-pg., 2016-01-01.
Resumo

While most part of the complex network models are described in function of some growth mechanism, the optimization of a goal or certain characteristics can be desirable for some problems. This paper investigates structural optimization of networks in the highlevel classification context, where the classification produced by a traditional classifier is combined with the classification provided by complex network measures. Using the recently proposed social learning particle swarm optimization (SL-PSO), a bio-inspired optimization framework, which is responsible to build up the network and adjust the parameters of the hybrid model while conducting the optimization of a quality function, is proposed. Experiments on two real-world problems, the Handwritten Digits Recognition and the Semantic Role Labeling (SRL), were performed. In both problems, the optimization framework is able to improve the classification given by a state-of-the-art algorithm to SRL. Furthermore, the optimization framework proposed here can be extended to other machine learning tasks. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 11/50151-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 12/07926-3 - Algoritmos Evolutivos para Anotação de Papéis Semânticos
Beneficiário:Murillo Guimarães Carneiro
Modalidade de apoio: Bolsas no Brasil - Doutorado