A model-based clustering algorithm with covariates... - BV FAPESP
Busca avançada
Ano de início
Entree


A model-based clustering algorithm with covariates adjustment and its application to lung cancer stratification

Texto completo
Autor(es):
Relvas, Carlos E. M. ; Nakata, Asuka ; Chen, Guoan ; Beer, David G. ; Gotoh, Noriko ; Fujita, Andre
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY; v. 21, n. 04, p. 26-pg., 2023-09-08.
Resumo

Usually, the clustering process is the first step in several data analyses. Clustering allows identify patterns we did not note before and helps raise new hypotheses. However, one challenge when analyzing empirical data is the presence of covariates, which may mask the obtained clustering structure. For example, suppose we are interested in clustering a set of individuals into controls and cancer patients. A clustering algorithm could group subjects into young and elderly in this case. It may happen because the age at diagnosis is associated with cancer. Thus, we developed CEM-Co, a model-based clustering algorithm that removes/minimizes undesirable covariates' effects during the clustering process. We applied CEM-Co on a gene expression dataset composed of 129 stage I non-small cell lung cancer patients. As a result, we identified a subgroup with a poorer prognosis, while standard clustering algorithms failed. (AU)

Processo FAPESP: 18/21934-5 - Estatística de redes: teoria, métodos e aplicações
Beneficiário:André Fujita
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/17996-5 - Estratificação de desordens psiquiátricas utilizando análises discriminante e de agrupamento para redes
Beneficiário:André Fujita
Modalidade de apoio: Bolsas no Exterior - Pesquisa