Busca avançada
Ano de início
Entree


Combining in situ electrochemistry, operando XRD & Raman spectroscopy, and density functional theory to investigate the fundamentals of Li2CO3 formation in supercapacitors

Texto completo
Autor(es):
Freitas, Bruno ; Nunes, Willian G. ; Real, Carla G. ; Rodella, Cristiane B. ; Doubek, Gustavo ; da Silva, Leonardo M. ; Thaines, Ericson H. N. S. ; Pocrifka, Leandro A. ; Freitas, Renato G. ; Zanin, Hudson
Número total de Autores: 10
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF MATERIALS CHEMISTRY A; v. 11, n. 38, p. 15-pg., 2023-10-04.
Resumo

Higher voltage aqueous electrolytes in supercapacitors are a promising technology in energy storage applications due to their high power, low cost, and environmental friendliness. However, applying voltages under abusive conditions would cause damage or failure to the cell. Here, we report the transient modification of the electrode & electrolyte interface tracked by operando synchrotron X-ray diffraction and Raman spectroscopy analysis combined with in situ electrochemistry and theoretical calculations to explore the formation of lithium carbonate species and reversible degradation in supercapacitors. Symmetrical electrochemical supercapacitors were prepared with nickel oxide (NiO) decorated multiwalled carbon nanotube (MWCNT) electrodes and filled with 1.0 mol L-1 Li2SO4 aqueous electrolyte. Operando XRD analysis of NiO@MWCNT shows crystalline Li2CO3 formation when applying higher operating cell voltages, close to 2.0 V, in anodic polarization and decomposition in the cathodic polarization, evidencing the reversibility of the system. Studies by operando Raman spectroscopy showed that the carbon electrodes oxidise with structural changes on the carbon electrode surface. A theoretical analysis is presented to relate the effect of Li2CO3 formation on the electronic properties. Li2CO3 formation deformed the electron localization function of nanotubes, suggesting that Li-ion diffusion can be restricted, influencing Li2CO3 formation and reversible decomposition. A plausible reason for Li2CO3 formation is CO2 evolution due to the degradation of the MWCNT electrode and Li+ ions from the electrolyte, catalysed by NiO nanoparticles. Interestingly, Li2CO3 formation is reversible on the full cycle cell scan in the presence of NiO, being able to explore different applications in energy storage. (AU)

Processo FAPESP: 17/11958-1 - CINE - Divisão para Armazenamento de Energia Avançado
Beneficiário:Rubens Maciel Filho
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia
Processo FAPESP: 18/20756-6 - Desenvolvimento de pseudocapacitores a partir de compósitos de óxidos metálicos e carvão ativado
Beneficiário:Willian Gonçalves Nunes
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 14/02163-7 - Desenvolvimento de dispositivos supercapacitores a partir de grafenos, nanotubos de carbono e diamantes
Beneficiário:Hudson Giovani Zanin
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores