Busca avançada
Ano de início
Entree


Hemoglobin Estimation from Smartphone-Based Photoplethysmography with Small Data

Texto completo
Autor(es):
Mostrar menos -
Silva, Diego F. ; Junior, Jose G. B. de M. ; Domingues, Lucas V. ; Mazru-Nascimento, Thiago ; Almeida, JR ; Spiliopoulou, M ; Andrades, JAB ; Placidi, G ; Gonzalez, AR ; Sicilia, R ; Kane, B
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: 2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS; v. N/A, p. 4-pg., 2023-01-01.
Resumo

Photoplethysmography (PPG) is a well-known technique to estimate blood pressure, oxygen saturation, and heart frequency. Recent efforts aim to obtain PPG from wearable and mobile devices, allowing more democratic access. This paper explores the potential of using a smartphone camera as a PPG sensor, getting a time series based on the RGB values of video recordings of patients' fingertips. Through this PPG, we apply machine learning for the non-invasive estimation of hemoglobin levels. We assume a realistic scenario where the data has a low volume and potentially a low quality. The generalization capacity of the models built on these scenarios usually achieves undesirable performance. This paper presents a novel dataset that comprises real-world mobile phone-based PPG and a comprehensive experiment on how different techniques may improve hemoglobin estimation using deep neural architectures. In general, cleaning, augmentation, and ensemble positively affect the results. In some cases, these techniques reduced the mean absolute error by more than thirty percent. (AU)

Processo FAPESP: 23/02680-0 - Transferência de Aprendizado para Lidar com Heterogeneidade entre Dispositivos
Beneficiário:José Gilberto Barbosa de Medeiros Júnior
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 22/03176-1 - Aprendizado de máquina para séries temporais em aplicações de mHealth
Beneficiário:Diego Furtado Silva
Modalidade de apoio: Auxílio à Pesquisa - Projeto Inicial