Busca avançada
Ano de início
Entree


Quaternion-Based Backtracking Search Optimization Algorithm

Texto completo
Autor(es):
Passos, Leandro Aparecido ; Rodrigues, Douglas ; Papa, Joao Paulo ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC); v. N/A, p. 8-pg., 2019-01-01.
Resumo

Fitness landscape has been one of the main limitations regarding optimization tasks. Although meta-heuristic techniques have achieved outstanding results over a large variety of problems, some issues related to the function geometry and the risk to get trapped from local optima are issues that still require attention. To deal with this problem, we propose the Quaternion-based Backtracking Search Optimization Algorithm, a variant of the standard Backtracking Search Optimization Algorithm that maps each decision variable in a tensor onto a hypercomplex search space, whose landscape is expected to be smoother. Experiments conducted using nine benchmarking functions showed considerably better results than the ones achieved over standard search spaces, as well as more accurate results than some quaternion-based methods as well. (AU)

Processo FAPESP: 14/16250-9 - Sobre a otimização de parâmetros em técnicas de aprendizado de máquina: avanços e paradigmas
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 16/06441-7 - Recuperação de informação semântica em grandes bases de vídeos
Beneficiário:Jurandy Gomes de Almeida Junior
Modalidade de apoio: Auxílio à Pesquisa - Regular