Structure recovery for partially observed discrete... - BV FAPESP
Busca avançada
Ano de início
Entree


Structure recovery for partially observed discrete Markov random fields on graphs under not necessarily positive distributions

Texto completo
Autor(es):
Leonardi, Florencia ; Carvalho, Rodrigo ; Frondana, Iara
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: SCANDINAVIAN JOURNAL OF STATISTICS; v. N/A, p. 25-pg., 2023-08-14.
Resumo

We propose a penalized conditional likelihood criterion to estimate the basic neighborhood of each node in a discrete Markov random field that can be partially observed. We prove the convergence of the estimator in the case of a finite or countable infinite set of nodes. The estimated neighborhoods can be combined to estimate the underlying graph. In the finite case, the graph can be recovered with probability one. In contrast, we can recover any finite subgraph with probability one in the countable infinite case by allowing the candidate neighborhoods to grow as a function o(logn)$$ o\left(\log n\right) $$, with n$$ n $$ the sample size. Our method requires minimal assumptions on the probability distribution, and contrary to other approaches in the literature, the usual positivity condition is not needed. We evaluate the estimator's performance on simulated data and apply the methodology to a real dataset of stock index markets in different countries. (AU)

Processo FAPESP: 19/17734-3 - Seleção de modelos em alta dimensão: propriedades teóricas e aplicações
Beneficiário:Florencia Graciela Leonardi
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Regular
Processo FAPESP: 13/07699-0 - Centro de Pesquisa, Inovação e Difusão em Neuromatemática - NeuroMat
Beneficiário:Oswaldo Baffa Filho
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs