Busca avançada
Ano de início
Entree


On the optical flow model selection through metaheuristics

Texto completo
Autor(es):
Pereira, Danillo R. ; Delpiano, Jose ; Papa, Joao P.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING; v. N/A, p. 10-pg., 2015-05-09.
Resumo

Optical flow methods are accurate algorithms for estimating the displacement and velocity fields of objects in a wide variety of applications, being their performance dependent on the configuration of a set of parameters. Since there is a lack of research that aims to automatically tune such parameters, in this work, we have proposed an optimization-based framework for such task based on social-spider optimization, harmony search, particle swarm optimization, and Nelder-Mead algorithm. The proposed framework employed the well-known large displacement optical flow (LDOF) approach as a basis algorithm over the Middlebury and Sintel public datasets, with promising results considering the baseline proposed by the authors of LDOF. (AU)

Processo FAPESP: 14/16250-9 - Sobre a otimização de parâmetros em técnicas de aprendizado de máquina: avanços e paradigmas
Beneficiário:João Paulo Papa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/20387-7 - Otimização de hiperparâmetros em arquiteturas de aprendizado em profundidade
Beneficiário:João Paulo Papa
Modalidade de apoio: Bolsas no Exterior - Pesquisa