Busca avançada
Ano de início
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Spatio-temporal modelling of climate-sensitive disease risk: Towards an early warning system for dengue in Brazil

Texto completo
Lowe, Rachel [1] ; Bailey, Trevor C. [1] ; Stephenson, David B. [1] ; Graham, Richard J. [2] ; Coelho, Caio A. S. [3] ; Carvalho, Marilia Sa [4] ; Barcellos, Christovam [4]
Número total de Autores: 7
Afiliação do(s) autor(es):
[1] Univ Exeter, Sch Engn Math & Phys Sci, Exeter EX4 4QF, Devon - England
[2] Met Off Hadley Ctr, Exeter EX1 3PB, Devon - England
[3] Inst Nacl Pesquisas Espaciais, Ctr Previsao Tempo Estudos Climat, BR-12630000 Cachoeira Paulista, SP - Brazil
[4] Fundacao Oswaldo Cruz, Hlth Informat Res Lab, LIS ICICT Fiocruz, BR-21045900 Rio De Janeiro - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: Computers & Geosciences; v. 37, n. 3, SI, p. 371-381, MAR 2011.
Citações Web of Science: 59

This paper considers the potential for using seasonal climate forecasts in developing an early warning system for dengue fever epidemics in Brazil. In the first instance, a generalised linear model (GLM) is used to select climate and other covariates which are both readily available and prove significant in prediction of confirmed monthly dengue cases based on data collected across the whole of Brazil for the period January 2001 to December 2008 at the microregion level (typically consisting of one large city and several smaller municipalities). The covariates explored include temperature and precipitation data on a 2.5 degrees x 2.5 degrees longitude-latitude grid with time lags relevant to dengue transmission, an El Nino Southern Oscillation index and other relevant socio-economic and environmental variables. A negative binomial model formulation is adopted in this model selection to allow for extra-Poisson variation (overdispersion) in the observed dengue counts caused by unknown/unobserved confounding factors and possible correlations in these effects in both time and space. Subsequently, the selected global model is refined in the context of the South East region of Brazil, where dengue predominates, by reverting to a Poisson framework and explicitly modelling the overdispersion through a combination of unstructured and spatio-temporal structured random effects. The resulting spatio-temporal hierarchical model (or GLMM generalised linear mixed model) is implemented via a Bayesian framework using Markov Chain Monte Carlo (MCMC). Dengue predictions are found to be enhanced both spatially and temporally when using the GLMM and the Bayesian framework allows posterior predictive distributions for dengue cases to be derived, which can be useful for developing a dengue alert system. Using this model, we conclude that seasonal climate forecasts could have potential value in helping to predict dengue incidence months in advance of an epidemic in South East Brazil. (C) 2010 Elsevier Ltd. All rights reserved. (AU)

Processo FAPESP: 06/02497-6 - Um sistema integrado de previsoes climaticas para a america do sul.
Beneficiário:Caio Augusto dos Santos Coelho
Modalidade de apoio: Bolsas no Brasil - Jovens Pesquisadores
Processo FAPESP: 05/05210-7 - Um sistema integrado de previsões climáticas para América do Sul
Beneficiário:Caio Augusto dos Santos Coelho
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores