Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Heavy quarkonium: progress, puzzles, and opportunities

Texto completo
Autor(es):
Mostrar menos -
Brambilla, N. [1] ; Eidelman, S. [2, 3] ; Heltsley, B. K. [4] ; Vogt, R. [5, 6] ; Bodwin, G. T. [7] ; Eichten, E. [8] ; Frawley, A. D. [9] ; Meyer, A. B. [10] ; Mitchell, R. E. [11] ; Papadimitriou, V. [8] ; Petreczky, P. [12] ; Petrov, A. A. [13] ; Robbe, P. [14, 15] ; Vairo, A. [1] ; Andronic, A. [16] ; Arnaldi, R. [17] ; Artoisenet, P. [18] ; Bali, G. [19] ; Bertolin, A. [20] ; Bettoni, D. [21, 22] ; Brodzicka, J. [23] ; Bruno, G. E. [24, 25] ; Caldwell, A. [26] ; Catmore, J. [27] ; Chang, C. -H. [28, 29] ; Chao, K. -T. [30] ; Chudakov, E. [31] ; Cortese, P. [17] ; Crochet, P. [32] ; Drutskoy, A. [33] ; Ellwanger, U. [34] ; Faccioli, P. [35] ; Mokhtar, A. Gabareen [36] ; Garcia i Tormo, X. [37] ; Hanhart, C. [38, 39] ; Harris, F. A. [40] ; Kaplan, D. M. [41] ; Klein, S. R. [42] ; Kowalski, H. [10] ; Lansberg, J. -P. [43, 44] ; Levichev, E. [3] ; Lombardo, V. [45] ; Lourenco, C. [46] ; Maltoni, F. [47] ; Mocsy, A. [48] ; Mussa, R. [17] ; Navarra, F. S. [49] ; Negrini, M. [21, 22] ; Nielsen, M. [49] ; Olsen, S. L. [50] ; Pakhlov, P. [51] ; Pakhlova, G. [51] ; Peters, K. [16] ; Polosa, A. D. [52] ; Qian, W. [14, 15, 53] ; Qiu, J. -W. [12, 54] ; Rong, G. [55] ; Sanchis-Lozano, M. A. [56, 57] ; Scomparin, E. [17] ; Senger, P. [16] ; Simon, F. [26, 58] ; Stracka, S. [45, 59] ; Sumino, Y. [60] ; Voloshin, M. [61] ; Weiss, C. [31] ; Woehri, H. K. ; Yuan, C. -Z. [55]
Número total de Autores: 67
Afiliação do(s) autor(es):
Mostrar menos -
[1] Tech Univ Munich, Dept Phys, D-85748 Garching - Germany
[2] Novosibirsk State Univ, Novosibirsk 630090 - Russia
[3] Budker Inst Nucl Phys, Novosibirsk 630090 - Russia
[4] Cornell Univ, Ithaca, NY 14853 - USA
[5] Lawrence Livermore Natl Lab, Div Phys, Livermore, CA 94551 - USA
[6] Univ Calif Davis, Dept Phys, Davis, CA 95616 - USA
[7] Argonne Natl Lab, Div High Energy Phys, Argonne, IL 60439 - USA
[8] Fermilab Natl Accelerator Lab, Batavia, IL 60510 - USA
[9] Florida State Univ, Dept Phys, Tallahassee, FL 32306 - USA
[10] Deutsch Elektronensynchrotron DESY, D-2000 Hamburg - Germany
[11] Indiana Univ, Bloomington, IN 47405 - USA
[12] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 - USA
[13] Wayne State Univ, Dept Phys & Astron, Detroit, MI 48201 - USA
[14] CNRS, IN2P3, Lab Accelerateur Lineaire, F-91898 Orsay - France
[15] Univ Paris 11, Ctr Sci Orsay, F-91898 Orsay - France
[16] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt - Germany
[17] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin - Italy
[18] Ohio State Univ, Dept Phys, Columbus, OH 43210 - USA
[19] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg - Germany
[20] Ist Nazl Fis Nucl, Sez Padova, I-35131 Padua - Italy
[21] Univ Ferrara, I-44100 Ferrara - Italy
[22] Ist Nazl Fis Nucl, Sez Ferrara, I-44100 Ferrara - Italy
[23] Polish Acad Sci, Inst Nucl Phys, Krakow - Poland
[24] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari - Italy
[25] Univ Bari, I-70126 Bari - Italy
[26] Max Planck Inst Phys & Astrophys, D-80805 Munich - Germany
[27] Univ Lancaster, Dept Phys, Lancaster LA1 4YB - England
[28] CCAST World Lab, Beijing 100190 - Peoples R China
[29] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190 - Peoples R China
[30] Peking Univ, Dept Phys, Beijing 100871 - Peoples R China
[31] Thomas Jefferson Natl Accelerator Facil, Newport News, VA 23606 - USA
[32] Univ Clermont Ferrand, Clermont Univ, CNRS IN2P3, LPC, F-63000 Clermont Ferrand - France
[33] Univ Cincinnati, Cincinnati, OH 45221 - USA
[34] Univ Paris 11, CNRS, Phys Theor Lab, Unit Mixte Rech, UMR 8627, F-91405 Orsay - France
[35] LIP, P-1000149 Lisbon - Portugal
[36] SLAC Natl Accelerator Lab, Stanford, CA 94309 - USA
[37] Univ Alberta, Dept Phys, Edmonton, AB T6G 2G7 - Canada
[38] Forschungszentrum Julich, Inst Adv Simulat, D-52425 Julich - Germany
[39] Forschungszentrum Julich, Julich Ctr Hadron Phys, Inst Kernphys, D-52425 Julich - Germany
[40] Univ Hawaii, Dept Phys & Astron, Honolulu, HI 96822 - USA
[41] IIT, Chicago, IL 60616 - USA
[42] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 - USA
[43] Univ Paris 11, CNRS, IN2P3, IPNO, F-91405 Orsay - France
[44] Ecole Polytech, CNRS, Ctr Phys Theor, F-91128 Palaiseau - France
[45] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan - Italy
[46] CERN, CH-1211 Geneva 23 - Switzerland
[47] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain - Belgium
[48] Pratt Inst, Dept Math & Sci, Brooklyn, NY 11205 - USA
[49] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo - Brazil
[50] Seoul Natl Univ, Dept Phys & Astron, Seoul - South Korea
[51] Inst Theoret & Expt Phys, Moscow 117218 - Russia
[52] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome - Italy
[53] Tsinghua Univ, Dept Engn Phys, Beijing 100084 - Peoples R China
[54] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 - USA
[55] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049 - Peoples R China
[56] Ctr Mixto Univ Valencia CSIC, Inst Fis Corpuscular IFIC, Valencia 46100 - Spain
[57] Ctr Mixto Univ Valencia CSIC, Dept Fis Teor, Valencia 46100 - Spain
[58] Tech Univ Munich, Excellence Cluster Universe, D-8046 Garching - Germany
[59] Univ Milan, Dipartimento Fis, I-20133 Milan - Italy
[60] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578 - Japan
[61] Univ Minnesota, Sch Phys & Astron, William I Fine Theoret Phys Inst, Minneapolis, MN 55455 - USA
Número total de Afiliações: 61
Tipo de documento: Artigo de Revisão
Fonte: EUROPEAN PHYSICAL JOURNAL C; v. 71, n. 2 FEB 2011.
Citações Web of Science: 984
Resumo

A golden age for heavy-quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the B-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations at BESIII, the LHC, RHIC, FAIR, the Super Flavor and/or Tau-Charm factories, JLab, the ILC, and beyond. The list of newly found conventional states expanded to include h(c)(1P), chi(c2)(2P), B(c)(+), and eta(b)(1S). In addition, the unexpected and still-fascinating X(3872) has been joined by more than a dozen other charmonium- and bottomonium-like ``XYZ{''} states that appear to lie outside the quark model. Many of these still need experimental confirmation. The plethora of new states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c (c) over bar, b (b) over bar, and b (c) over bar bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. Lattice QCD has grown from a tool with computational possibilities to an industrial-strength effort now dependent more on insight and innovation than pure computational power. New effective field theories for the description of quarkonium in different regimes have been developed and brought to a high degree of sophistication, thus enabling precise and solid theoretical predictions. Many expected decays and transitions have either been measured with precision or for the first time, but the confusing patterns of decays, both above and below open-flavor thresholds, endure and have deepened. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts. (AU)