Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Comparative studies focusing on transgenic through cp4EPSPS gene and non-transgenic soybean plants: An analysis of protein species and enzymes

Texto completo
Autor(es):
Arruda, Sandra C. C. [1] ; Barbosa, Herbert S. [2, 3] ; Azevedo, Ricardo A. [1] ; Arruda, Marco A. Z. [2, 3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, ESALQ, Dept Genet, Lab Plant Biochem & Genet, BR-13400970 Piracicaba, SP - Brazil
[2] Uniuers Campinas Unicamp, Inst Chem, Spectrometry Sample Preparat & Mech Grp, BR-13083970 Campinas, SP - Brazil
[3] Uniuers Campinas Unicamp, Inst Chem, Natl Inst Sci & Technol Bioanalyt, BR-13083970 Campinas, SP - Brazil
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF PROTEOMICS; v. 93, n. SI, p. 107-116, NOV 20 2013.
Citações Web of Science: 27
Resumo

This work evaluates the activity of a few key enzymes involved in combating reactive oxygen species (ROS), such as ascorbate peroxidase (EC 1.11.1.11), catalase (EC 1.11.1.6), glutathione reductase (EC 1.6.4.2), and superoxide dismutase (EC 1.15.1.1), as well as the concentration of malondialdehyde and hydrogen peroxide in transgenic and non-transgenic soybean leaves. Additionally, differential protein species from leaves of both genotypes were evaluated by applying a regulation factor of >= 1.8 to further corroborate the hypothesis that genetic modification itself can be a stress factor for these plants. For this task, transgenic soybean plants were obtained from seeds modified with the cp4EPSPS gene. The results revealed higher activities of all evaluated enzymes in transgenic than in non-transgenic soybean leaves (ranging from 13.8 to 70.1%), as well as higher concentrations of malondialdehyde and hydrogen peroxide in transgenic soybean leaves, clearly indicating a condition of oxidative stress established in the transgenic genotype. Additionally, 47 proteins were differentially abundant when comparing the leaves of both plants, with 26 species accurately identified, including the protein involved in the genetic modification (CP4EPSPS). From these results, it is possible to conclude that the plant is searching for a new equilibrium to maintain its metabolism because the stress condition is being maintained within levels that can be tolerated by the plant. Biological significance The present paper is the first one in the literature where are shown translational aspects involving plant stress and the genetic modification for soybean involving the cp4 EPSPS gene. The main biological importance of this work is to make possible the demystification of the genetic modification, allowing answers for some questions that still remain unknown, and enlarge our knowledge about genetically modified organisms. This article is part of a Special Issue entitled: Translational Plant Proteomics. (C) 2013 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 09/54676-0 - Estresse oxidativo induzido por metais: novas abordagens
Beneficiário:Ricardo Antunes de Azevedo
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 10/50204-3 - Estudo detalhado dos perfis proteico e enzimático em soja (Glicine max l. Merril) transgênica e não-transgênica para o herbicida glifosato (roudup ready)
Beneficiário:Sandra Cristina Capaldi Arruda
Linha de fomento: Bolsas no Brasil - Pós-Doutorado