Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

The Dotted-Board Model: A new MIP model for nesting irregular shapes

Texto completo
Autor(es):
Toledo, Franklina M. B. [1] ; Carravilla, Maria Antonia [2] ; Ribeiro, Cristina [3] ; Oliveira, Jose F. [2] ; Gomes, A. Miguel [2]
Número total de Autores: 5
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Porto, Fac Engn, INESC, TEC, P-4200465 Oporto - Portugal
[3] Univ Porto, INESC, TEC, DEI, FAC Engn, P-4200465 Oporto - Portugal
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS; v. 145, n. 2, p. 478-487, OCT 2013.
Citações Web of Science: 29
Resumo

The nesting problem, also known as irregular packing problem, belongs to the generic class of cutting and packing (C\&P) problems. It differs from other 2-D C\&P problems in the irregular shape of the pieces. This paper proposes a new mixed-integer model in which binary decision variables are associated with each discrete point of the board (a dot) and with each piece type. It is much more flexible than previously proposed formulations and solves to optimality larger instances of the nesting problem, at the cost of having its precision dependent on board discretization. To date no results have been published concerning optimal solutions for nesting problems with more than 7 pieces. We ran computational experiments on 45 problem instances with the new model, solving to optimality 34 instances with a total number of pieces ranging from 16 to 56, depending on the number of piece types, grid resolution and the size of the board. A strong advantage of the model is its insensitivity to piece and board geometry, making it easy to extend to more complex problems such as non-convex boards, possibly with defects. Additionally, the number of binary variables does not depend on the total number of pieces but on the number of piece types, making the model particularly suitable for problems with few piece types. The discrete nature of the model requires a trade-off between grid resolution and problem size, as the number of binary variables grows with the square of the selected grid resolution and with board size. (C) 2013 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 10/10133-0 - Problemas de corte, empacotamento, dimensionamento de lotes e programação da produção, e suas integrações em contextos industriais e logísticos
Beneficiário:Reinaldo Morabito Neto
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 12/00464-4 - Modelos e métodos de resolução para o problema de corte bidimensional
Beneficiário:Franklina Maria Bragion de Toledo
Linha de fomento: Auxílio à Pesquisa - Pesquisador Visitante - Internacional