Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

3-Nets realizing a group in a projective plane

Texto completo
Autor(es):
Korchmaros, Gabor [1] ; Nagy, Gabor P. [2, 3] ; Pace, Nicola [4]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Basilicata, Dipartimento Matemat & Informat, I-85100 Potenza - Italy
[2] Univ Szeged, Bolyai Inst, H-6720 Szeged - Hungary
[3] MTA ELTE Geometr & Algebra Combinator Res Grp, H-1117 Budapest - Hungary
[4] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 4
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF ALGEBRAIC COMBINATORICS; v. 39, n. 4, p. 939-966, JUN 2014.
Citações Web of Science: 5
Resumo

In a projective plane defined over an algebraically closed field of characteristic 0, we give a complete classification of 3-nets realizing a finite group. An infinite family, due to Yuzvinsky (Compos. Math. 140:1614-1624, 2004), arises from plane cubics and comprises 3-nets realizing cyclic and direct products of two cyclic groups. Another known infinite family, due to Pereira and Yuzvinsky (Adv. Math. 219:672-688, 2008), comprises 3-nets realizing dihedral groups. We prove that there is no further infinite family. UrzA(0)a's 3-nets (Adv. Geom. 10:287-310, 2010) realizing the quaternion group of order 8 are the unique sporadic examples. If p is larger than the order of the group, the above classification holds in characteristic p > 0 apart from three possible exceptions , , and . Motivation for the study of finite 3-nets in the complex plane comes from the study of complex line arrangements and from resonance theory; see (Falk and Yuzvinsky in Compos. Math. 143:1069-1088, 2007; Miguel and Buzunariz in Graphs Comb. 25:469-488, 2009; Pereira and Yuzvinsky in Adv. Math. 219:672-688, 2008; Yuzvinsky in Compos. Math. 140:1614-1624, 2004; Yuzvinsky in Proc. Am. Math. Soc. 137:1641-1648, 2009). (AU)

Processo FAPESP: 12/03526-0 - Geometria finita, curvas algébricas e Aplicações à teoria de códigos
Beneficiário:Nicola Pace
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado