Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

DEFORMATION OF THREE-DIMENSIONAL HYPERBOLIC CONE STRUCTURES: THE NONCOLLAPSING CASE

Texto completo
Autor(es):
Barreto, Alexandre Paiva [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: PACIFIC JOURNAL OF MATHEMATICS; v. 268, n. 1, p. 1-21, MAR 2014.
Citações Web of Science: 0
Resumo

This work is devoted to the study of deformations of hyperbolic cone structures under the assumption that the length of the singularity remains uniformly bounded over the deformation. Let (M-i,M- p(i)) be a sequence of pointed hyperbolic cone manifolds with cone angles of at most 2 pi and topological type (M, Sigma), where M is a closed, orientable and irreducible 3-manifold and Sigma an embedded link in M. Assuming that the length of the singularity remains uniformly bounded, we prove that either the sequence M-i collapses and M is Seifert fibered or a Sol manifold, or the sequence M-i does not collapse and, in this case, a subsequence of (M-i,M- p(i)) converges to a complete three dimensional Alexandrov space endowed with a hyperbolic metric of finite volume on the complement of a finite union of quasigeodesics. We apply this result to a question proposed by Thurston and to provide universal constants for hyperbolic cone structures when Sigma is a small link in M. (AU)

Processo FAPESP: 09/16234-5 - Estruturas geométricas cônicas em variedades de dimensão 2 e 3
Beneficiário:Alexandre Paiva Barreto
Linha de fomento: Bolsas no Brasil - Pós-Doutorado