| Processo: | 23/01374-3 |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |
| Data de Início da vigência: | 01 de julho de 2023 |
| Data de Término da vigência: | 30 de junho de 2025 |
| Área do conhecimento: | Ciências Exatas e da Terra - Ciência da Computação - Metodologia e Técnicas da Computação |
| Acordo de Cooperação: | CNPq |
| Pesquisador responsável: | João Paulo Papa |
| Beneficiário: | João Paulo Papa |
| Instituição Sede: | Faculdade de Ciências (FC). Universidade Estadual Paulista (UNESP). Campus de Bauru. Bauru , SP, Brasil |
| Município da Instituição Sede: | Bauru |
| Vinculado ao auxílio: | 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria, AP.CEPID |
| Bolsa(s) vinculada(s): | 23/10823-6 - Estudo e Desenvolvimento de Modelos Computacionais Inteligentes Biologicamente Plausíveis, BP.JD |
| Assunto(s): | Aprendizado computacional Reconhecimento de padrões Lógica do plausível |
| Palavra(s)-Chave do Pesquisador: | Aprendizado de Máquina | Reconhecimento de Padrões | Sistemas biologicamente plausíveis | Aprendizado de máquina |
Resumo
Descobertas neurológicas relacionadas a diferentes regiões do cérebro sugerem novos esclarecimentos sobre as células piramidais, uma arquitetura neuronal composta de cinco camadas, cuja interação é responsével pelos fluxos de entrada e resposta das informações e integração entre contexto e memória, dentre outras tarefas. Tais descobertas inspiraram o desenvolvimento de modelos computacionais inteligentes mais plausíveis do ponto de vista biológico, os quais geralmente implicam em modelos mais eficientes e precisos. Com relação a esses modelos de aprendizagem de máquina (do inglês Machine Learning - ML), podemos citar abordagens guiadas por contexto, as quais utilizam informação contextual para lidar com ambiguidade, inclusive implementando mecanismos para lidar com informações temporais e simular memória. Outros trabalhos vão além, tratando o problema de atribuição de crédito, isto é, atribuir o ajuste relativo ao seu desempenho à cada conexão em uma rede neural, pelos princípios primários dos neurônios piramidais. Nesse contexto, burst-dependent learning ou Burstpropagation proporciona um paradigma baseado nesses princípios que pode ser implementado em diversos tipos de redes neurais. Sendo assim, esta proposta visa implementar modelos existentes e desenvolver novas arquiteturas de aprendizagem de máquinas mais biologicamente plausíveis, bem como utilizar tais modelos para solução de problemas em diversas áreas de pesquisa, como medicina e engenharia. (AU)
| Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio: |
| Mais itensMenos itens |
| TITULO |
| Matéria(s) publicada(s) em Outras Mídias ( ): |
| Mais itensMenos itens |
| VEICULO: TITULO (DATA) |
| VEICULO: TITULO (DATA) |