Resumo
As sequências de Fibonacci \((F_n)\) e de Lucas \((L_n)\) possuem uma relação profunda com certas matrizes chamadas de \(Q\)-matrizes. A \(Q\)-matriz de Fibonacci, $Q_F = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, é conhecida pela \(n\)-ésima potência resultar em $Q_F^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$. Por sua vez, a \(Q\)-matriz de Lucas, $Q_L = \begin…