Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Boundary element method applied to topology optimization using the level set method and an alternative velocity regularization

Texto completo
Autor(es):
Oliveira, Hugo Luiz [1] ; Leonel, Edson Denner [1]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Struct Engn, Ave Trabalhador SaoCarlense, 400 Ctr, BR-13566590 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: MECCANICA; v. 54, n. 3, p. 549-563, FEB 2019.
Citações Web of Science: 0
Resumo

The topology optimization (TO) is a valuable tool in the early stages of structural engineering design. It enables the determination of the structural layout accounting for the required performance and utilizing less amount of material. In this study, an algorithm for TO is proposed, which is based on two computational procedures. On one hand the boundary element method (BEM), which is efficient for mechanical modelling and remeshing due to its mesh dimension reduction. On the other hand, the level set method (LSM) is an efficient approach to parameterize the design domain. Moreover, it handles complex topology changes without difficulties. The new feature presented here is showing a different formulation of the problem and explore its benefits. The idea is based on the augmented Lagrangian method in which shape sensitivity is used to drive the topology search. The shape derivative takes advantage of conformal and invertible mappings contributing for global stability. To reduce the susceptibility to local minima, a topology perturbation scheme based on local stresses is also adopted. The normal boundary velocity field may be locally singular. In this case the Peng regularization is utilized to maintain stability. These improvements make the algorithm convergent even on the presence of local instabilities. The LSM provides the structural geometry from its zero-level-set curve. Then, this curve is discretised through the BEM. The classical upwind fashion respecting strict CFL conditions is utilised for solving LSM equations. Local holes may be included at each time step, which enables topology changes based on local stress. Classical benchmark examples are used to illustrate the efficiency of the numerical procedure. (AU)

Processo FAPESP: 12/24944-5 - Desenvolvimento de modelos numéricos para análises de otimização topológica probabilística utilizando o método dos elementos de contorno
Beneficiário:Hugo Luiz Oliveira
Linha de fomento: Bolsas no Brasil - Doutorado
Processo FAPESP: 15/07931-5 - Desenvolvimento de modelos numéricos para otimização topológica probabilística utilizando o método dos elementos de contorno
Beneficiário:Hugo Luiz Oliveira
Linha de fomento: Bolsas no Exterior - Estágio de Pesquisa - Doutorado