| Texto completo | |
| Autor(es): |
Número total de Autores: 3
|
| Afiliação do(s) autor(es): | [1] Univ Sao Paulo EESC USP, Sao Carlos Sch Engn, Biol Proc Lab, Ave Joao Dagnone 1100, BR-13563120 Sao Carlos, SP - Brazil
[2] Fed Inst Sci & Technol Ceara State, Campus Taua, Rua Antonio Texeira Benevides 01, BR-63660000 Taua, CE - Brazil
[3] Ruhr Univ Bochum, Dept Civil & Environm Engn, Inst Urban Water Management & Environm Engn, Univ Str 150, D-44801 Bochum - Germany
Número total de Afiliações: 3
|
| Tipo de documento: | Artigo de Revisão |
| Fonte: | CHEMICAL ENGINEERING JOURNAL; v. 415, JUL 1 2021. |
| Citações Web of Science: | 0 |
| Resumo | |
This is a critical review regarding the enhancement of biomethane production through a syntrophic DIET process using conductive support materials focusing on the use of magnetite and granular activated carbon. These materials can accelerate electron transfer in methanogenic systems, relieving enzymatic activities required for hydrogen/formate transfer. However, the intrinsic limitations of DIET in batch and continuous reactors amended with conductive materials still require further investigations to understand which are the bottlenecks within these biosystems. On basis of this demand, this review raises a critical discussion on three methodological aspects regarding studies for DIET stimulation focused on using magnetite and activated carbon, two of the most easily accessible materials with high electrical conductivity used in methanogenic systems: i) the need for more investigation with long-term operation of biological reactors to identify possible inhibitory phenomena associated with conductive materials; ii) the importance of performing at least two different control tests in batch assays to disclose the potential effect of methanogenic DIET-based process; and iii) adopting a mass ratio between abiotic material and biomass to define the inhibitory range for conductive material dosage. The consideration of these three methodological aspects can lead to the development of more comprehensive and efficient strategies for the scale-up of methanogenic DIET-based systems amended with conductive materials. (AU) | |
| Processo FAPESP: | 15/06246-7 - Aplicação do Conceito de Biorrefinaria a Estações de Tratamento Biológico de Águas Residuárias: O Controle da Poluição Ambiental Aliado à Recuperação de Matéria e Energia |
| Beneficiário: | Marcelo Zaiat |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |