Busca avançada
Ano de início
Entree


Backpropagation Neural Network for Analysis and Classification of Fluorescence Spectroscopy of Squamous Cell Carcinoma in Animal Model

Texto completo
Autor(es):
Nogueira, Joao Marcelo ; Garcia, Marlon Rodrigues ; Requena, Michelle Barreto ; Moriyama, Lilian Tan ; Pratavieira, Sebastiao ; Magalhaes, Daniel Varela ; IEEE
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: 2021 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC); v. N/A, p. 4-pg., 2021-01-01.
Resumo

The present study aims to evaluate the performance of a backpropagation neural network (BPNN) using the principal component analysis (PCA) of fluorescence spectra for discrimination between normal skin and skin tumor on mice. The fluorescence spectra were acquired from nude mice with induced squamous cell carcinoma (SCC). The artificial neural network (ANN) used in this study is a classical multiplayer feed-forward type with a back-propagation algorithm. The classification results show this technique as promising for healthy and unhealthy tissue classification. During the validation, the network classified 100% of the training set spectra and 90% of the test set. (AU)

Processo FAPESP: 13/07276-1 - CEPOF - Centro de Pesquisa em Óptica e Fotônica
Beneficiário:Vanderlei Salvador Bagnato
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 14/50857-8 - INCT 2014 - de Óptica Básica e Aplicada às Ciências da Vida
Beneficiário:Vanderlei Salvador Bagnato
Modalidade de apoio: Auxílio à Pesquisa - Temático