Busca avançada
Ano de início
Entree


Learning Visual Dictionaries from Class-Specific Superpixel Segmentation

Texto completo
Autor(es):
Castelo-Fernandez, Cesar ; Falcao, Alexandre X. ; Vento, M ; Percannella, G
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT I; v. 11678, p. 12-pg., 2019-01-01.
Resumo

Visual dictionaries (Bag of Visual Words - BoVW) can be a very powerful technique for image description whenever exists a reduced number of training images, being an attractive alternative to deep learning techniques. Nevertheless, models for BoVW learning are usually unsupervised and rely on the same set of visual words for all images in the training set. We present a method that works with small supervised training sets. It first generates superpixels from multiple images of a same class, for interest point detection, and then builds one visual dictionary per class. We show that the detected interest points can be more relevant than the traditional ones (e.g., grid sampling) in the context of a given application-the classification of intestinal parasite images. The study uses three image datasets, with a total of 15 different species of parasites, and a diverse class, namely impurity, which makes the problem difficult with examples similar to all the remaining classes of parasites. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/03940-5 - Aprendizado Interativo de Dicionários Visuais Aplicado à Classificação de Imagens
Beneficiário:César Christian Castelo Fernández
Modalidade de apoio: Bolsas no Brasil - Doutorado