Busca avançada
Ano de início
Entree


Matrix coupling and generalized frustration in Kuramoto oscillators

Texto completo
Autor(es):
Buzanello, Guilhermo L. ; Barioni, Ana Elisa D. ; de Aguiar, Marcus A. M.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Chaos; v. 32, n. 9, p. 8-pg., 2022-09-01.
Resumo

The Kuramoto model describes the synchronization of coupled oscillators that have different natural frequencies. Among the many generalizations of the original model, Kuramoto and Sakaguchi (KS) proposed a frustrated version that resulted in dynamic behavior of the order parameter, even when the average natural frequency of the oscillators is zero. Here, we consider a generalization of the frustrated KS model that exhibits new transitions to synchronization. The model is identical in form to the original Kuramoto model but written in terms of unit vectors and with the coupling constant replaced by a coupling matrix. The matrix breaks the rotational symmetry and forces the order parameter to point in the direction of the eigenvector with the highest eigenvalue, when the eigenvalues are real. For complex eigenvalues, the module of order parameter oscillates while it rotates around the unit circle, creating active states. We derive the complete phase diagram for the Lorentzian distribution of frequencies using the Ott-Antonsen ansatz. We also show that changing the average value of the natural frequencies leads to further phase transitions where the module of the order parameter goes from oscillatory to static. (AU)

Processo FAPESP: 21/10709-3 - Sincronização de osciladores de kuramoto com acoplamentos generalizados
Beneficiário:Guilhermo Luz Buzanello
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 19/24068-0 - Osciladores generalizados de Kuramoto com forças externas
Beneficiário:Ana Elisa Dellamatrice Barioni
Modalidade de apoio: Bolsas no Brasil - Mestrado