Busca avançada
Ano de início
Entree


Classification of Pollen Grain Images Based on an Ensemble of Classifiers

Texto completo
Autor(es):
Arias, David Gutierrez ; Mussel Cirne, Marcos Vinicius ; Chire Saire, Josimar Edinson ; Pedrini, Helio ; Chen, X ; Luo, B ; Luo, F ; Palade, V ; Wani, MA
Número total de Autores: 9
Tipo de documento: Artigo Científico
Fonte: 2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA); v. N/A, p. 7-pg., 2017-01-01.
Resumo

The recognition of pollen grains is a challenging task since they are three-dimensional structures with complex morphological characteristics. Palynologists are responsible for studying pollen, spores and similar microscopic plant structures. In this work, we develop and analyze an automatic method for classification of pollen grain images based on a set of features and classifiers. Predictions of different classifiers are fused into an ensemble rule of majority voting. Experiments conducted on two datasets containing different types of pollen grains are used to demonstrate the effectiveness of the proposed approach. (AU)

Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático