Busca avançada
Ano de início
Entree


BeeRBF: A bee-inspired data clustering approach to design RBF neural network classifiers

Texto completo
Autor(es):
Ferreira Cruz, Davila Patricia ; Maia, Renato Dourado ; da Silva, Leandro Augusto ; de Castro, Leandro Nunes
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: Neurocomputing; v. 172, p. 11-pg., 2016-01-08.
Resumo

Different methods have been used to train radial basis function (RBF) neural networks. This paper proposes the use of a bee-inspired algorithm, named cOptBees, plus a heuristic to automatically select the number, location and dispersions of basis functions to be used in RBF networks. cOptBees was originally designed to solve data clustering problems and the prototypes determined by the algorithm will be selected as the centers for the RBF network. The presented approach, named BeeRBF, is used to solve classification problems and is evaluated both in terms of the decision boundaries generated and classification accuracy. The performance of BeeRBF was compared with that of k-means, random center selection and some other proposals from the literature. The results show that BeeRBF is competitive and has the advantage of automatically determining the number of centers to be used in the RBF network. (C) 2015 Elsevier BAT. All rights reserved. (AU)

Processo FAPESP: 13/12005-7 - Agrupamento e Classificação de Dados Usando um Algoritmo Inspirado no Comportamento de Abelhas
Beneficiário:Dávila Patrícia Ferreira Cruz
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 13/05757-2 - Classificação de imagens combinando características visuais e dados textuais: abordagem neural e baseada em enxames
Beneficiário:Leandro Augusto da Silva
Modalidade de apoio: Auxílio à Pesquisa - Regular