Busca avançada
Ano de início
Entree


On the Role of Non-effective Code in Linear Genetic Programming

Texto completo
Autor(es):
Dal Piccol Sotto, Leo Francoso ; Rothlauf, Franz ; LopezIbanez, M
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19); v. N/A, p. 9-pg., 2019-01-01.
Resumo

In linear variants of Genetic Programming (GP) like linear genetic programming (LGP), structural introns can emerge, which are nodes that are not connected to the final output and do not contribute to the output of a program. There are claims that such non-effective code is beneficial for search, as it can store relevant and important evolved information that can be reactivated in later search phases. Furthermore, introns can increase diversity, which leads to higher GP performance. This paper studies the role of non-effective code by comparing the performance of LGP variants that deal differently with non-effective code for standard symbolic regression problems. As we find no decrease in performance when removing or randomizing structural introns in each generation of a LGP run, we have to reject the hypothesis that structural introns increase LGP performance by preserving meaningful sub-structures. Our results indicate that there is no important information stored in structural introns. In contrast, we find evidence that the increase of diversity due to structural introns positively affects LGP performance. (AU)

Processo FAPESP: 18/13202-4 - Desenvolvimento de um algoritmo de programação genética linear usando algoritmos de estimação de distribuição aplicado a aprendizado de máquina supervisionado
Beneficiário:Léo Françoso Dal Piccol Sotto
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado Direto