Autor(es): |
Thomaz, Carlos Eduardo
;
Giraldi, Gilson Antonio
;
Ranchordas, A
;
Araujo, H
Número total de Autores: 4
|
Tipo de documento: | Artigo Científico |
Fonte: | VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1; v. N/A, p. 2-pg., 2009-01-01. |
Resumo | |
In this paper, we extend the Maximum uncertainty Linear Discriminant Analysis (MLDA), proposed recently for limited sample size problems, to its kernel version. The new Kernel Maximum uncertainty Discriminant Analysis (KMDA) is a two-stage method composed of Kernel Principal Component Analysis (KPCA) followed by the standard MLDA. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with other existing kernel discriminant methods, such as Generalized Discriminant Analysis (GDA) and Regularized Kernel Discriminant Analysis (RKDA). The classification results indicate that KMDA performs as well as GDA and RKDA, with the advantage of being a straightforward stabilization approach for the within-class scatter matrix that uses higher-order features for further classification improvements. (AU) | |
Processo FAPESP: | 05/02899-4 - Imagem, estatística e data mining: métodos computacionais para análise do cérebro humano |
Beneficiário: | Carlos Eduardo Thomaz |
Modalidade de apoio: | Auxílio à Pesquisa - Jovens Pesquisadores |