Busca avançada
Ano de início
Entree


Opportunistic Data Gathering in IoT Networks using Discrete Optimization

Texto completo
Autor(es):
Afonso, Edvar ; Campista, Miguel Elias M. ; IEEE
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2020 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC); v. N/A, p. 6-pg., 2020-01-01.
Resumo

The Internet of Things (IoT) is based on data collection for future processing and decision making. In multihop Low-Power and Lossy Network (LLN) scenarios, efficient data forwarding in terms of generated traffic and energy consumption is fundamental. This paper revisits the concept of mobile agents to collect data along the agents's itinerary. The idea is to avoid sending requests to the network when non-expired contents that were opportunistically collected are available in the cache of a central element. In the proposed mechanism, the itinerary is composed of devices of interest and intermediate devices in a closed loop at the origin. Knapsack optimization is used to add unsolicited data opportunistically. The reward is calculated according data popularity. Simulations show that it is possible to reduce network traffic and the energy consumed by devices when compared to the traditional mobile agent data gathering model. (AU)

Processo FAPESP: 15/24490-2 - MC2: computação móvel, distribuição de conteúdo e computação em nuvem
Beneficiário:Luis Henrique Maciel Kosmalski Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático