Busca avançada
Ano de início
Entree


An Unsupervised Capacity Identification Approach Based on Sobol' Indices

Texto completo
Autor(es):
Pelegrina, Guilherme Dean ; Duarte, Leonardo Tomazeli ; Grabisch, Michel ; Travassos Romano, Joao Marcos ; Torra, V ; Narukawa, Y ; Nin, J ; Agell, N
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2020); v. 12256, p. 12-pg., 2020-01-01.
Resumo

In many ranking problems, some particular aspects of the addressed situation should be taken into account in the aggregation process. An example is the presence of correlations between criteria, which may introduce bias in the derived ranking. In these cases, aggregation functions based on a capacity may be used to overcome this inconvenience, such as the Choquet integral or the multilinear model. The adoption of such strategies requires a stage to estimate the parameters of these aggregation operators. This task may be difficult in situations in which we do not have either further information about these parameters or preferences given by the decision maker. Therefore, the aim of this paper is to deal with such situations through an unsupervised approach for capacity identification based on the multilinear model. Our goal is to estimate a capacity that can mitigate the bias introduced by correlations in the decision data and, therefore, to provide a fairer result. The viability of our proposal is attested by numerical experiments with synthetic data. (AU)

Processo FAPESP: 17/23879-9 - Integrais de Choquet em tomada de decisão multicritério multigrupo
Beneficiário:Guilherme Dean Pelegrina
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Doutorado
Processo FAPESP: 16/21571-4 - Métodos de apoio à decisão multicritério e multigrupo: modelos baseados no processamento da informação
Beneficiário:Guilherme Dean Pelegrina
Modalidade de apoio: Bolsas no Brasil - Doutorado