Busca avançada
Ano de início
Entree


Video Reenactment as Inductive Bias for Content-Motion Disentanglement

Texto completo
Autor(es):
Albarracin, Juan F. Hernandez ; Ramirez Rivera, Adin
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Image Processing; v. 31, p. 10-pg., 2022-01-01.
Resumo

Independent components within low-dimensional representations are essential inputs in several downstream tasks, and provide explanations over the observed data. Video-based disentangled factors of variation provide low-dimensional representations that can be identified and used to feed task-specific models. We introduce MTC-VAE, a self-supervised motion-transfer VAE model to disentangle motion and content from videos. Unlike previous work on video content-motion disentanglement, we adopt a chunk-wise modeling approach and take advantage of the motion information contained in spatiotemporal neighborhoods. Our model yields independent per-chunk representations that preserve temporal consistency. Hence, we reconstruct whole videos in a single forward-pass. We extend the ELBO's log-likelihood term and include a Blind Reenactment Loss as an inductive bias to leverage motion disentanglement, under the assumption that swapping motion features yields reenactment between two videos. We evaluate our model with recently-proposed disentanglement metrics and show that it outperforms a variety of methods for video motion-content disentanglement. Experiments on video reenactment show the effectiveness of our disentanglement in the input space where our model outperforms the baselines in reconstruction quality and motion alignment. (AU)

Processo FAPESP: 17/16144-2 - Transferência de dinâmica de vídeo para vídeo com modelos generativos profundos
Beneficiário:Juan Felipe Hernández Albarracín
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 19/07257-3 - Aprendendo representações através de modelos generativos profundos em vídeo
Beneficiário:Gerberth Adín Ramírez Rivera
Modalidade de apoio: Auxílio à Pesquisa - Regular