Busca avançada
Ano de início
Entree


Shedding Light on Variational Autoencoders

Texto completo
Autor(es):
Ruiz Vargas, J. C. ; Novaes, S. F. ; Cobe, R. ; Iope, R. ; Stanzani, S. ; Tomei, T. R. ; IEEE
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: 2018 XLIV LATIN AMERICAN COMPUTER CONFERENCE (CLEI 2018); v. N/A, p. 5-pg., 2018-01-01.
Resumo

Deep neural networks provide the canvas to create models of millions of parameters to fit distributions involving an equally large number of random variables. The contribution of this study is twofold. First, we introduce a diffraction dataset containing computer-based simulations of a Young's interference experiment. Then, we demonstrate the adeptness of variational autoencoders to learn diffraction patterns and extract a latent feature that correlates with the physical wavelength. (AU)

Processo FAPESP: 13/01907-0 - Centro de Pesquisa e Análise de São Paulo
Beneficiário:Sergio Ferraz Novaes
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 16/15897-4 - Busca por nova física no experimento CMS do Large Hadron Collider
Beneficiário:Thiago Rafael Fernandez Perez Tomei
Modalidade de apoio: Auxílio à Pesquisa - Regular