Busca avançada
Ano de início
Entree
Conteúdo relacionado


MINIMIZING ROOTS OF MAPS BETWEEN SPHERES AND PROJECTIVE SPACES IN CODIMENSION ONE

Texto completo
Autor(es):
Fenille, Marcio Colombo ; Goncalves, Daciberg Lima ; Prado, Gustavo De Lima
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Proceedings of the American Mathematical Society; v. 150, n. 12, p. 10-pg., 2022-07-15.
Resumo

We determine a lower bound for the dimension of the Cech co-homology of the root sets of maps from the sphere S2n+1 and from the real projective space RP2n+1 into the complex projective space CPn, for n >= 1. For each such a map, we construct a representative of its homotopy class which realize the lower bound and whose root set is minimal in the class. We prove that the circle is a minimal root set for any non-trivial homotopy class. We present analogous results for maps from both S4n+3 and RP4n+3 into the orbit space CP2n+1/T, for n >= 0, where T is a free involution on CP2n+1. In this setting, we prove that the disjoint union of two circles is a minimal root set for any non-trivial homotopy class. (AU)

Processo FAPESP: 16/24707-4 - Topologia algébrica, geométrica e diferencial
Beneficiário:Daciberg Lima Gonçalves
Modalidade de apoio: Auxílio à Pesquisa - Temático