Busca avançada
Ano de início
Entree


Dynamic Offloading for Improved Performance and Energy Efficiency in Heterogeneous IoT-Edge-Cloud Continuum

Texto completo
Autor(es):
Mostrar menos -
Vicenzi, Julio Costella ; Korol, Guilherme ; Jordan, Michael G. ; de Morais, Wagner Ourique ; Ali, Hazem ; de Freitas, Edison Pignaton ; Rutzig, Mateus Beck ; Beck, Antonio Carlos Schneider ; Kastensmidt, F ; Reis, R ; Todri-Sanial, A ; Li, H ; Metzler, C
Número total de Autores: 13
Tipo de documento: Artigo Científico
Fonte: 2023 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI; v. N/A, p. 6-pg., 2023-01-01.
Resumo

While machine learning applications in IoT devices are getting more widespread, the computational and power limitations of these devices pose a great challenge. To handle this increasing computational burden, edge, and cloud solutions emerge as a means to offload computation to more powerful devices. However, the unstable nature of network connections constantly changes the communication costs, making the offload process (i.e., when and where to transfer data) a dynamic trade-off. In this work, we propose DECOS: a framework to automatically select at run-time the best offloading solution with minimum latency based on the computational capabilities of devices and network status at a given moment. We use heterogeneous devices for edge and Cloud nodes to evaluate the framework's performance using MobileNetV1 CNN and network traffic data from a real-world 4G bandwidth dataset. DECOS effectively selects the best processing node to maintain the minimum possible latency, reducing it up to 29% compared to Cloud-exclusive processing while reducing the energy consumption by 1.9x compared to IoT-exclusive execution. (AU)

Processo FAPESP: 21/06825-8 - ADAPTT: provendo eficiência de recursos na classificação de tráfego através do uso sinergético e adaptativo de FPGAs e CNNs
Beneficiário:Antonio Carlos Schneider Beck Filho
Modalidade de apoio: Auxílio à Pesquisa - Regular