Busca avançada
Ano de início
Entree


Numerical relativity simulations of precessing binary neutron star mergers

Texto completo
Autor(es):
Dietrich, Tim ; Bernuzzi, Sebastiano ; Bruegmann, Bernd ; Ujevic, Maximiliano ; Tichy, Wolfgang
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW D; v. 97, n. 6, p. 13-pg., 2018-03-05.
Resumo

We present the first set of numerical relativity simulations of binary neutron mergers that include spin precession effects and are evolved with multiple resolutions. Our simulations employ consistent initial data in general relativity with different spin configurations and dimensionless spin magnitudes similar to 0.1. They start at a gravitational-wave frequency of similar to 392 Hz and cover more than 1 precession period and about 15 orbits up to merger. We discuss the spin precession dynamics by analyzing coordinate trajectories, quasilocal spin measurements, and energetics, by comparing spin aligned, antialigned, and irrotational configurations. Gravitational waveforms from different spin configuration are compared by calculating the mismatch between pairs of waveforms in the late inspiral. We find that precession effects are not distinguishable from nonprecessing configurations with aligned spins for approximately face-on binaries, while the latter are distinguishable from nonspinning configurations. Spin precession effects are instead clearly visible for approximately edge-on binaries. For the parameters considered here, precession does not significantly affect the characteristic postmerger gravitational-wave frequencies nor the mass ejection. Our results pave the way for the modeling of spin precession effects in the gravitational waveform from binary neutron star events. (AU)

Processo FAPESP: 17/02139-7 - Fusões genéricas de sistemas binários de estrelas de nêutrons.
Beneficiário:Maximiliano Ujevic Tonino
Modalidade de apoio: Bolsas no Exterior - Pesquisa