Busca avançada
Ano de início
Entree


Unsupervised Detection of Adversarial Collaboration in Data-Driven Networking

Texto completo
Autor(es):
Sammarco, Matteo ; Mitre Campista, Miguel Elias ; Detyniecki, Marcin ; Razafindralambo, Tahiry ; de Amorim, Marcelo Dias ; Cianfrani, A ; Riggio, R ; Steiner, R ; Idzikowski, F
Número total de Autores: 9
Tipo de documento: Artigo Científico
Fonte: PROCEEDINGS OF THE 2019 10TH INTERNATIONAL CONFERENCE ON NETWORKS OF THE FUTURE (NOF 2019); v. N/A, p. 8-pg., 2019-01-01.
Resumo

Data-driven networking in combination with machine learning is a powerful way to design and manage networked systems. In this paper, we consider the case of participatory collection of wireless traffic, which is an inexpensive way to infer the wireless activity in a locality. Since such a type of measurement system leans on the goodwill of the end users, it opens a new venue for malicious actions. Possible consequences of attacks are changes in the underlying communication substrate or even the collapse of the network. We assess the influence of these adversaries by identifying possible hostile actions and propose a method to detect them based on unsupervised machine learning models. Through an experimental campaign in various scenarios, we show that attacks with critical impacts are systematically detected, while unidentified attacks produce only a negligible impact in the measurement system. (AU)

Processo FAPESP: 15/24490-2 - MC2: computação móvel, distribuição de conteúdo e computação em nuvem
Beneficiário:Luis Henrique Maciel Kosmalski Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático