Busca avançada
Ano de início
Entree


INTERACTIVE COCONUT TREE ANNOTATION USING FEATURE SPACE PROJECTIONS

Texto completo
Autor(es):
Vargas-Munoz, John E. ; Zhou, Ping ; Falcao, Alexandre X. ; Tuia, Devis ; IEEE
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019); v. N/A, p. 4-pg., 2019-01-01.
Resumo

The detection and counting of coconut trees in aerial images are important tasks for environment monitoring and post-disaster assessment. Recent deep-learning-based methods can attain accurate results, but they require a reasonably high number of annotated training samples. In order to obtain such large training sets with considerably reduced human effort, we present a semi-automatic sample annotation method based on the 2D t-SNE projection of the sample feature space. The proposed approach can facilitate the construction of effective training sets more efficiently than using the traditional manual annotation, as shown in our experimental results with VHR images from the Kingdom of Tonga. (AU)

Processo FAPESP: 16/14760-5 - Anotação Interativa de Imagens de Sensoriamento Remoto
Beneficiário:John Edgar Vargas Muñoz
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 14/12236-1 - AnImaLS: Anotação de Imagem em Larga Escala: o que máquinas e especialistas podem aprender interagindo?
Beneficiário:Alexandre Xavier Falcão
Modalidade de apoio: Auxílio à Pesquisa - Temático