Busca avançada
Ano de início
Entree


PARTICLE FILTERING ON THE COMPLEX STIEFEL MANIFOLD WITH APPLICATION TO SUBSPACE TRACKING

Texto completo
Autor(es):
Bordin Jr, Claudio J. ; Bruno, Marcelo G. S. ; IEEE
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING; v. N/A, p. 5-pg., 2020-01-01.
Resumo

In this paper, we extend previous particle filtering methods whose states were constrained to the (real) Stiefel manifold to the complex case. The method is then applied to a Bayesian formulation of the subspace tracking problem. To implement the proposed particle filter, we modify a previous MCMC algorithm so as to simulate from densities defined on the complex manifold. Also, to compute subspace estimates from particle approximations, we extend existing averaging methods to complex Grassmannians. As we verify via numerical simulations, the proposed method is advantageous over traditional SVD-based subspace tracking algorithms for scenarios with low signal-to-noise ratio. (AU)

Processo FAPESP: 18/26191-0 - Métodos Bayesianos para estimação distribuída em redes cooperativas
Beneficiário:Marcelo Gomes da Silva Bruno
Modalidade de apoio: Auxílio à Pesquisa - Regular