Busca avançada
Ano de início
Entree


Tuned Support Vector Machine Classifier for Pedestrian Recognition in Urban Traffic

Texto completo
Autor(es):
Roncancio, Henry ; Hernandes, Andre Carmona ; Archila, John Faber ; Becker, Marcelo
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: INGENIERIA; v. 17, n. 2, p. 9-pg., 2012-01-01.
Resumo

The need for autonomy and intelligent decision-making in automobile flow is booming. For this purpose there are a number of interesting problems related to recognition of features in urban environments. One of the main relevant aspects in this subject is the recognition of pedestrians, a technology that is expected to save millions of lives avoiding or decreasing the rates of pedestrian run away. In this paper we propose the recognition of pedestrians in urban environments using a classifier based on a Support Vector Machine. We used up to 5000 images from the INRIA database to train the classifier and validate its accuracy through the cross-validation method. (AU)

Processo FAPESP: 11/03986-9 - Detecção e classificação de objetos em ambientes externos para navegação de um veículo de passeio autônomo utilizando fusão de dados de visão artificial e sensor laser
Beneficiário:Henry Antonio Roncancio Velandia
Modalidade de apoio: Bolsas no Brasil - Mestrado