Busca avançada
Ano de início
Entree


Hidden physics in the decays of pions and other mesons

Texto completo
Autor(es):
Guzzo, M. M. ; Leite, L. J. F. ; Novelo, S. W. P. ; Peres, O. L. G. ; Pleitez, V.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW D; v. 107, n. 9, p. 10-pg., 2023-05-01.
Resumo

It has been commonly assumed that pseudoscalar contributions to the leptonic decay of charged mesons, like pions and kaons, is strongly constrained due to the helicity suppression present in the ratio Rl/l' = Gamma(P -lv[y])/Gamma(P -l'v[y]), where P are the charged pseudoscalar meson and l; l' = e, mu, T. Here we show that if the effective couplings are proportional to the corresponding charged lepton masses (and also the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix), the constraints from Rl/l' are entirely avoided, and a rather new large allowed region is permitted in the parameter space. In the case of the electron, we found a nontrivial region in the range 10-4 less than or similar to (GI/GF) less than or similar to 10-3, where GI is the effective pseudoscalar coupling associated with a novel charged scalar field, I, and GF is the Fermi constant. Furthermore, we show that this dependence of the pseudoscalar couplings on the charged lepton masses can naturally be associated with a critical class beyond the standard model physics, namely models without (leptonic) flavor-changing neutral currents in the scalar sector. The most known examples are the models that satisfy the so-called Glashow-Weinberg-Paschos theorem. Finally, we also point out that, in those cases, the decay rate is degenerated with the Standard Model prediction, possibly hiding the new physics effects in those decays. (AU)

Processo FAPESP: 14/19164-6 - Desafios para o século XXI em física e astrofísica de neutrinos
Beneficiário:Orlando Luis Goulart Peres
Modalidade de apoio: Auxílio à Pesquisa - Projetos Especiais