Busca avançada
Ano de início
Entree


Quantum cosmology in (1+1)-dimensional Horava-Lifshitz theory of gravity

Texto completo
Autor(es):
Pitelli, J. P. M.
Número total de Autores: 1
Tipo de documento: Artigo Científico
Fonte: PHYSICAL REVIEW D; v. 93, n. 10, p. 7-pg., 2016-05-12.
Resumo

In a recent paper [Phys. Rev. D 92, 084012 (2015)], the author studied the classical (1 + 1)-dimensional Friedmann-Robertson-Walker (FRW) universe filled with a perfect fluid in the Horava-Lifshitz (HL) theory of gravity. This theory is dynamical due to the anisotropic scaling of space and time. It also resembles the Jackiw-Teitelboim model, in which a dilatonic degree of freedom is necessary for dynamics. In this paper, I will take one step further in the understanding of (1 + 1)-dimensional HL cosmology by means of the quantization of the FRW universe filled with a perfect fluid with the equation of state (EoS) p = w rho. The fluid will be introduced in the model via Schutz formalism and Dirac's algorithm will be used for quantization. It will be shown that the Schrodinger equation for the wave function of the universe has the following properties: for w = 1 (radiation fluid), the characteristic potential will be exponential, resembling Liouville quantum mechanics; for w not equal 1, a characteristic inverse square potential appears in addition to a regular polynomial that depends on the EoS. Explicit solutions for a few cases of interest will be found and the expectation value of the scale factor will be calculated. As in usual quantum cosmology, it will be shown that the quantum theory smooths out the big-bang singularity, but the classical behavior of the universe is recovered in the low-energy limit. (AU)

Processo FAPESP: 13/09357-9 - Física e geometria do espaço-tempo
Beneficiário:Alberto Vazquez Saa
Modalidade de apoio: Auxílio à Pesquisa - Temático