Busca avançada
Ano de início
Entree


Randomized methods for higher-order subspace separation

Texto completo
Autor(es):
da Costa, Michele N. ; Lopes, Renato R. ; Romano, Joao Marcos T. ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO); v. N/A, p. 5-pg., 2016-01-01.
Resumo

This paper presents an algorithm for signal subspace separation in the context of multidimensional data. The proposal is an extension of the randomized Singular Value Decomposition (SVD) for higher-order tensors. From a set derived from random sampling, we construct an orthogonal basis associated with the range of each mode-space of the input data tensor. Multilinear projection of the input data onto each mode-space then transforms the data to a low-dimensional representation. Finally, we compute the Higher-Order Singular Value Decomposition (HOSVD) of the reduced tensor. Furthermore, we propose an algorithm for computing the randomized HOSVD based on the row-extraction technique. The results reveal a relevant improvement from the standpoint of computational complexity. (AU)

Processo FAPESP: 14/23936-4 - Aplicações de processamento de dados multidimensionais usando métodos tensoriais
Beneficiário:Michele Nazareth da Costa
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado