Busca avançada
Ano de início
Entree


Using Taylor Series Expansions and Second-Order Statistics for Blind Source Separation in Post-Nonlinear Mixtures

Texto completo
Autor(es):
Mostrar menos -
Fantinato, Denis G. ; Duarte, Leonardo T. ; Deville, Yannick ; Jutten, Christian ; Attux, Romis ; Neves, Aline ; Deville, Y ; Gannot, S ; Mason, R ; Plumbley, MD ; Ward, D
Número total de Autores: 11
Tipo de documento: Artigo Científico
Fonte: LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018); v. 10891, p. 11-pg., 2018-01-01.
Resumo

In the context of Post-Nonlinear (PNL) mixtures, source separation based on Second-Order Statistics (SOS) is a challenging topic due to the inherent difficulties when dealing with nonlinear transformations. Under the assumption that sources are temporally colored, the existing SOS-inspired methods require the use of Higher-Order Statistics (HOS) as a complement in certain stages of PNL demixing. However, a recent study has shown that the sole use of SOS is sufficient for separation if certain constraints on the separation system are obeyed. In this paper, we propose the use of a PNL separating model based on constrained Taylor series expansions which is able to satisfy the requirements that allow a successful SOS-based source separation. The simulation results corroborate the proposal effectiveness. (AU)

Processo FAPESP: 17/11488-5 - Análise Multivariada da Estrutura Temporal de Dados para Separação Cega de Fontes no Contexto de Misturas Não Lineares e de Múltiplos Conjuntos de Dados
Beneficiário:Denis Gustavo Fantinato
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado