Texto completo | |
Autor(es): |
Chanda, Sumanto
;
Ghose-Choudhury, Anindya
;
Guha, Partha
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Electronic Journal of Differential Equations; v. N/A, p. 9-pg., 2018-06-15. |
Resumo | |
We present a construction of the Jacobi-Maupertuis (JM) principle for an equation of the Lienard type, x<(x)double over dot> + f (x)<(x)over dot>(2) + g (x) = 0, using Jacobi's last multiplier. The JM metric allows us to reformulate the Newtonian equation of motion for a variable mass as a geodesic equation for a Riemannian metric. We illustrate the procedure with examples of Painleve-Gambier XXI, the Jacobi equation and the Henon-Heiles system. (AU) | |
Processo FAPESP: | 16/06560-6 - Dinâmica não-linear e gravidade |
Beneficiário: | Betti Hartmann |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |