Busca avançada
Ano de início
Entree


Describing heat dissipation in the resistive state of three-dimensional superconductors

Texto completo
Autor(es):
Cadorim, Leonardo Rodrigues ; Toledo, Lucas Veneziani de ; Sardella, Edson
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS; v. 622, p. 10-pg., 2024-05-23.
Resumo

In this work we study the role of the heat diffusion equation in simulating the resistive state of superconducting films. By analyzing the current-voltage and current-resistance characteristic curves for temperatures close to T c and various heat removal scenarios, we demonstrate that heat diffusion notably influences the behavior of the resistive state, specially near the transition to the normal state, where heat significantly changes the critical current and the calculated resistance. Furthermore, we show how the efficiency of the substrate has important effects in the dynamics of the system, particularly for lower temperatures. Finally, we investigate the hysteresis loops, the role of the film thickness and of the Ginzburg-Landau parameter, the findings reassuring the significance of accounting for heat diffusion in accurately modeling the resistive state of superconducting films and provide valuable insights into its complex dynamics. To accomplish these findings, we have used the 3 D generalized Ginzburg-Landau equation coupled with the heat diffusion equation. (AU)

Processo FAPESP: 20/03947-2 - Caracterização de propriedades magnéticas e eletrônicas em supercondutores mesoscópicos e nanoestruturados com múltiplas bandas
Beneficiário:Leonardo Rodrigues Cadorim
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 19/24618-0 - Aglomerados de vórtices em filmes supercondutores mesoscópicos do tipo i induzidos por gradiente térmico
Beneficiário:Lucas Veneziani de Toledo
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 20/10058-0 - Estudo do estado resistivo de supercondutores mesoscópicos de espessura finita
Beneficiário:Edson Sardella
Modalidade de apoio: Auxílio à Pesquisa - Regular