Busca avançada
Ano de início
Entree


Randomized Encoding Ensemble: A New Approach for Texture Representation

Texto completo
Autor(es):
Fares, Ricardo T. ; Vicentim, Ana Catarina M. ; Scabini, Leonardo ; Zielinski, Kallil M. ; Jennane, Rachid ; Bruno, Odemir M. ; Ribas, Lucas C.
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: 2024 31ST INTERNATIONAL CONFERENCE ON SYSTEMS, SIGNALS AND IMAGE PROCESSING, IWSSIP 2024; v. N/A, p. 8-pg., 2024-01-01.
Resumo

Although many learning-based approaches have been proposed for texture analysis showing promising results, they use large and complex architectures and suffer from limited data availability for training in real problems. This paper proposes a compact texture representation method based on an ensemble of Randomized Autoencoders (RAE). In our approach, we process each texture image through multiple RAEs, which perform various random projections in the hidden layer, mapping them into the same dimensional space to learn different image perspectives in the output layer (decoder). We adopt this strategy because the quality of the texture representation can be constrained by a single random projection of the input matrix. Consequently, we propose enhancing feature extraction by concatenating the average of the column values from the learned weight matrices (decoder) in the output layer of each autoencoder. The proposed texture representation was evaluated on four datasets: Outex, USPtex, Brodatz and MBT, showing that our method obtains higher classification accuracies when compared to other literature methods, including deep convolutional neural networks. We also assess the effectiveness of the proposed representation through its application to the practical and challenging task of identifying Brazilian plant species. The results indicate that the proposed texture representation is highly discriminating, showing an important contribution to the texture analysis field and applications. (AU)

Processo FAPESP: 23/04583-2 - Reconhecimento de padrões em imagens baseado em redes neurais artificiais e sistemas complexos: da extração de descritores manuais ao aprendizado automático
Beneficiário:Lucas Correia Ribas
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 22/15840-3 - Análise de texturas baseada em redes neurais randomizadas com aplicações em diagnóstico de doenças
Beneficiário:Ana Catarina Marques Vicentim
Modalidade de apoio: Bolsas no Brasil - Iniciação Científica
Processo FAPESP: 18/22214-6 - Rumo à convergência de tecnologias: de sensores e biossensores à visualização de informação e aprendizado de máquina para análise de dados em diagnóstico clínico
Beneficiário:Osvaldo Novais de Oliveira Junior
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 22/03668-1 - Análise do Comportamento Dinâmico de Sistemas Complexos e Redes Neurais Artificiais em Visão Computacional e Inteligência Artificial
Beneficiário:Kallil Miguel Caparroz Zielinski
Modalidade de apoio: Bolsas no Brasil - Doutorado