Busca avançada
Ano de início
Entree


DigiNet: Scaling up Provisioning of Network Digital Twin

Texto completo
Autor(es):
Luizelli, Marcelo C. ; Vogt, Francisco G. ; Severo de Souza, Paulo Silas ; Lorenzon, Arthur F. ; da Costa Filho, Roberto I. T. ; Rossi, Fabio D. ; Calheiros, Rodrigo N. ; Rothenberg, Christian Esteve
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: 2024 IEEE 10TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION, NETSOFT 2024; v. N/A, p. 9-pg., 2024-01-01.
Resumo

The pursuit of self-driving networks is increasing pressure on adopting intelligent, edge-based networking services. However, deploying autonomous network models within operational and large-scale infrastructures entails substantial risks that require rigorous verification and validation procedures. In this context, the application of a Network Digital Twin (NDT) is emerging as a viable approach towards intelligent network decision-making based on high-fidelity models built upon digital representations of physical network devices (i.e., Digital Twins). In this paper, we take the first steps towards efficiently provisioning NDT models. To that end, we introduce the Digital Twin Network Provisioning Problem (DigiNet), which encompasses the optimal placement of NDT models and the efficient collection of telemetry data for synchronizing NDT models with their physical counterparts. We theoretically formalize DigiNet as a Mixed-Integer Linear Programming (MILP) model and present a polynomial-time heuristic. Our results show that DigiNet outperforms baseline approaches by up to 10x regarding the number of NDT models provisioned. (AU)

Processo FAPESP: 23/00794-9 - DigiNet: rumo à era das redes inteligentes assistidas por digital twin
Beneficiário:Marcelo Caggiani Luizelli
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/06981-0 - Spinner: rumo à orquestração eficiente da inteligência em planos de dados programáveis
Beneficiário:Marcelo Caggiani Luizelli
Modalidade de apoio: Auxílio à Pesquisa - Regular