Busca avançada
Ano de início
Entree


On triangular virtual elements for Kirchhoff-Love shells

Texto completo
Autor(es):
Wu, T. P. ; Pimenta, P. M. ; Wriggers, P.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: ARCHIVE OF APPLIED MECHANICS; v. 94, n. 9, p. 34-pg., 2024-04-26.
Resumo

We develop low-order triangular virtual elements for linear Kirchhoff-Love shells from an engineering point of view. Flat element geometry is considered, which enables a direct shell discretization with no need for a curvilinear coordinate system or predefined initial mapping. Along with the assumed linearity of the problem, the superposition of the uncoupled membrane and plate energies is performed by unifying aspects of the virtual element method when applied to linear two-dimensional elasticity and plate bending problems. We explore low-order cases, namely linear to quadratic membrane displacements and quadratic to cubic deflection polynomial approximations such that no internal degrees of freedom are needed. For all elements, a single stabilization available in the literature is employed to stabilize the element formulations. Numerical examples of static problems show that the presented formulation is capable of solving complex shell problems. Possible extensions are discussed in future works. (AU)

Processo FAPESP: 20/13362-1 - Mecânica, estocástica e controle com acoplamento de códigos: otimização de fazendas terrestres ou oceânicas de turbinas eólicas com pás flexíveis através da ótica de sistemas multi-corpos
Beneficiário:Paulo de Mattos Pimenta
Modalidade de apoio: Auxílio à Pesquisa - Temático