Busca avançada
Ano de início
Entree


Ultralow Catalytic Loading for Optimised Electrocatalytic Performance of AuPt Nanoparticles to Produce Hydrogen and Ammonia

Texto completo
Autor(es):
Mostrar menos -
Bezerra, Leticia S. ; Brasseur, Paul ; Sullivan-Allsop, Sam ; Cai, Rongsheng ; da Silva, Kaline N. ; Wang, Shiqi ; Singh, Harishchandra ; Yadav, Ashok K. ; Santos, Hugo L. S. ; Chundak, Mykhailo ; Abdelsalam, Ibrahim ; Heczko, Vilma J. ; Sitta, Elton ; Ritala, Mikko ; Huo, Wenyi ; Slater, Thomas J. A. ; Haigh, Sarah J. ; Camargo, Pedro H. C.
Número total de Autores: 18
Tipo de documento: Artigo Científico
Fonte: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION; v. 63, n. 29, p. 10-pg., 2024-06-14.
Resumo

The hydrogen evolution and nitrite reduction reactions are key to producing green hydrogen and ammonia. Antenna-reactor nanoparticles hold promise to improve the performances of these transformations under visible-light excitation, by combining plasmonic and catalytic materials. However, current materials involve compromising either on the catalytic activity or the plasmonic enhancement and also lack control of reaction selectivity. Here, we demonstrate that ultralow loadings and non-uniform surface segregation of the catalytic component optimize catalytic activity and selectivity under visible-light irradiation. Taking Pt-Au as an example we find that fine-tuning the Pt content produces a 6-fold increase in the hydrogen evolution compared to commercial Pt/C as well as a 6.5-fold increase in the nitrite reduction and a 2.5-fold increase in the selectivity for producing ammonia under visible light excitation relative to dark conditions. Density functional theory suggests that the catalytic reactions are accelerated by the intimate contact between nanoscale Pt-rich and Au-rich regions at the surface, which facilitates the formation of electron-rich hot-carrier puddles associated with the Pt-based active sites. The results provide exciting opportunities to design new materials with improved photocatalytic performance for sustainable energy applications. Antenna-reactor nanoparticles (NPs) are at the forefront of plasmonic catalysis. This work demonstrates that ultralow loadings and non-uniform surface segregation of the catalytic component in gold-platinum (AuPt) NPs unlock superior catalytic activity and controlled selectivity for hydrogen evolution and nitrite reduction reactions under visible-light excitation. This finding paves the way for designing highly efficient plasmonic catalysts. image (AU)

Processo FAPESP: 13/07296-2 - CDMF - Centro de Desenvolvimento de Materiais Funcionais
Beneficiário:Elson Longo da Silva
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 17/11986-5 - Geração e Armazenamento de Novas Energias: trazendo desenvolvimento tecnológico para o país
Beneficiário:Ana Flávia Nogueira
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia