Texto completo | |
Autor(es): |
Balducci, Francesco
;
Oliva, Francescantonio
;
Petitta, Francesco
;
Stapenhorst, Matheus f.
Número total de Autores: 4
|
Tipo de documento: | Artigo Científico |
Fonte: | DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS; v. N/A, p. 33-pg., 2024-12-24. |
Resumo | |
In this paper we study existence and regularity of solutions to Dirichlet problems as {-div(|u|(m) Du |Du|)=f in Omega, u=0 on partial derivative Omega, w here Omega is an open bounded subset of RN (N >= 2) with Lipschitz boundary, m>0, and f belongs to the Lorentz space LN,infinity(Omega). In particular, we explore the regularizing effect given by the degenerate coefficient |u|(m) in order to get non-trivial and bounded solutions with no smallness assumptions on the size of the data. (AU) | |
Processo FAPESP: | 22/15727-2 - Problemas elípticos quasilineares singulares envolvendo o operador 1-laplaciano |
Beneficiário: | Matheus Frederico Stapenhorst |
Modalidade de apoio: | Bolsas no Exterior - Estágio de Pesquisa - Pós-Doutorado |
Processo FAPESP: | 21/12773-0 - Problemas singulares quasilineares elípticos envolvendo os operadores 1-laplaciano e curvatura-média |
Beneficiário: | Matheus Frederico Stapenhorst |
Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |