Busca avançada
Ano de início
Entree


Additive- and binder-free hard carbon nanofibers for sodium-ion batteries

Texto completo
Autor(es):
Silva, Vinicius D. ; Melo, Eduardo C. ; Martins, Vitor L. ; de Oliveira, Paulo F. M. ; Ando, Romulo A. ; Catalani, Luiz H. ; Torresi, Roberto M.
Número total de Autores: 7
Tipo de documento: Artigo Científico
Fonte: NANO ENERGY; v. 136, p. 14-pg., 2025-04-01.
Resumo

Hard carbon (HC) has been the most promising negative electrode candidate for sodium-ion batteries (SIBs). However, its microstructure still needs to be optimized and better understood to improve sodium-ion storage and thus achieve widespread commercialization. In this study, self-supporting HC nanofibers as negative electrodes for SIBs were thoroughly investigated. This research focused on understanding the influence of the carbonization temperature (1000-1600 degrees C) on the microstructure and electrochemical performance. Higher carbonization temperatures result in more organized microstructures with fewer defects but do not necessarily result in the best specific capacity. Therefore, the HC nanofibers obtained at 1400 degrees C showed the best balance between the slope (adsorption) and plateau (intercalation) capacities, suggesting an optimized microstructure for sodium-ion storage. Additionally, operando Raman spectroscopy, GITT and ex situ HRTEM analysis were used to elucidate the Na+ storage mechanism, and the results suggested a multistage process involving adsorption, intercalation, and pore filling. In a practical comparison, self-supporting HC electrodes outperformed traditional ink- based HC electrodes; the corresponding reversible capacity and initial Coulombic efficiency (ICE) was 363 mAh g(-1) (78 %) for the HC14-nanofiber but only 98 mAh g(-1) (36 %) for the HC14-ink. This drastic reduction in the electrochemical performance of the ink-based electrode is due to microstructural modifications imposed by the conventional processing steps and the loss of microporosity caused by binder infiltration. This work contributes to the understanding of the Na+ storage mechanisms in HCs and highlights the potential of selfsupporting HC nanofibrous electrodes for high-performance SIBs. (AU)

Processo FAPESP: 22/11983-4 - Espectroscopias com intensificação de sinal: nanomateriais, teoria e simulação computacional
Beneficiário:Mauro Carlos Costa Ribeiro
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 22/12609-9 - Nanofibras de hard carbon como eletrodo negativo auto-suportado para a próxima geração de baterias de íons de sódio
Beneficiário:Vinícius Dias Silva
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 21/00675-4 - Arquitetura de materiais para armazenamento de energia eletroquímica e catálise
Beneficiário:Roberto Manuel Torresi
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/14955-6 - Desenvolvendo uma nova geração de materiais avançados multicomponentes via síntese mecanoquímica
Beneficiário:Paulo Filho Marques de Oliveira
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 19/26309-4 - Além de íon-Li: desenvolvimento de baterias reversíveis de metal-ar não-aquosas
Beneficiário:Vitor Leite Martins
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores