Busca avançada
Ano de início
Entree


QoE Estimation Across Different Cloud Gaming Services Using Transfer Learning

Texto completo
Autor(es):
Carvalho, Marcos ; Soares, Daniel ; Macedo, Daniel Fernandes
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT; v. 21, n. 6, p. 12-pg., 2024-12-01.
Resumo

Cloud Gaming (CG) has become one of the most important cloud-based services in recent years by providing games to different end-network devices, such as personal computers (wired network) and smartphones/tablets (mobile network). CG services stand challenging for network operators since this service demands rigorous network Quality of Services (QoS). Nevertheless, ensuring proper Quality of Experience (QoE) keeps the end-users engaged in the CG services. However, several factors influence users' experience, such as context (i.e., game type/players) and the end-network type (wired/mobile). In this case, Machine Learning (ML) models have achieved the state-of-the-art on the end-users' QoE estimation. Despite that, traditional ML models demand a larger amount of data and assume that the training and test have the same distribution, which can make the ML models hard to generalize to other scenarios from what was trained. This work employs Transfer Learning (TL) techniques to create QoE estimation over different cloud gaming services (wired/mobile) and contexts (game type/players). We improved our previous work by performing a subjective QoE assessment with real users playing new games on a mobile cloud gaming testbed. Results show that transfer learning can decrease the average MSE error by at least 34.7% compared to the source model (wired) performance on the mobile cloud gaming and to 81.5% compared with the model trained from scratch. (AU)

Processo FAPESP: 20/05182-3 - PORVIR-5G: programabilidade, orquestração e virtualização em redes 5G
Beneficiário:José Marcos Silva Nogueira
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/23097-3 - SFI2: fatiamento de infraestruturas de internet do futuro
Beneficiário:Tereza Cristina Melo de Brito Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Temático