| Processo: | 04/07563-1 |
| Modalidade de apoio: | Auxílio à Pesquisa - Regular |
| Data de Início da vigência: | 01 de setembro de 2004 |
| Data de Término da vigência: | 31 de agosto de 2007 |
| Área do conhecimento: | Ciências Exatas e da Terra - Física - Física da Matéria Condensada |
| Pesquisador responsável: | Jose Pedro Donoso Gonzalez |
| Beneficiário: | Jose Pedro Donoso Gonzalez |
| Instituição Sede: | Instituto de Física de São Carlos (IFSC). Universidade de São Paulo (USP). São Carlos , SP, Brasil |
| Município da Instituição Sede: | São Carlos |
| Assunto(s): | Propriedades de transporte Eletrólitos poliméricos Ressonância magnética nuclear Vidro Nanocompósitos Ressonância magnética |
| Palavra(s)-Chave do Pesquisador: | Eletrolito Polimerico | Nanocompositos | Propriedades De Transporte | Ressonancia Magnetica | Rmn | Vidros |
Resumo
O objetivo deste Projeto é pesquisar os mecanismos de transporte fônico, identificar as interações e os mecanismos de relaxação dominantes (magnéticas e/ou elétricas) e determinar parâmetros dinâmicos, em condutores iônicos e sistemas de baixa dimensionalidade, utilizando técnicas de ressonância magnética (nuclear e eletrônica). Os objetivos específicos são investigar os mecanismos de transporte e a dinâmica macromolecular em novos condutores iônicos poliméricos (eletrólitos poliméricos); a dinâmica iônica e molecular das espécies inseridas em matrices inorgânicas (compostos de intercalação); e os mecanismos de transporte em vidros oxifluoretos e suas vitro-cerâmicas (que são sistemas nanocopósitos). Estes sistemas são de uma considerável complexidade devido ao fato de que as dinâmicas iônicas e moleculares ocorrem em meios desordenados e/ou de dimensionalidade reduzida. Nestes materiais investigaremos os caminhos de migração iônica, analisaremos a dinâmica dos íons responsáveis pela condutividade determinando seus parâmetros dinâmicos (energias de ativação, tempos de correlação, coeficiente de difusão e número efetivo de íons que participam no processo de condução iônica) e tentaremos correlacionar as propriedades macroscópicas (como a condutividade) e as propriedades estruturas com as informações microscópicas obtidas dos estudos de RMN. Estes materiais destacam-se pela sua potencial utilização em dispositivos tecnológicos, como sensores de gases, eletrólitos em baterias recarregáveis, músculo artificial, supercapacitores e dispositivos eletrocrômicos (caso dos eletrólitos poliméricos), eletrodos em baterias de estado sólido (caso dos compostos de intercalação) e como fibras óticas, conversores de freqüência, amplificadores ópticos e chaves fotônicas (caso dos vidros e vitro cerâmicas). (AU)
| Matéria(s) publicada(s) na Agência FAPESP sobre o auxílio: |
| Mais itensMenos itens |
| TITULO |
| Matéria(s) publicada(s) em Outras Mídias ( ): |
| Mais itensMenos itens |
| VEICULO: TITULO (DATA) |
| VEICULO: TITULO (DATA) |